
www.manaraa.com

EXTRACTING SOFTWARE REQUIREMENTS SPECIFICATION: A

NATURAL LANGUAGE APPROACH

By

Yara Alkhader

Supervisor

Dr. Amjad Hudaib

Co-supervisor

Dr. Bassam Hammo

This Thesis Was Submitted In Partial Fulfillment For The Requirements

For The Master’s Degree Of Science In Computer Science.

Faculty of graduate studies

The University of Jordan

August, 2006

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

II

DEDICATION

To my parents who have always been my inspiration, their trust, believing in me and

support were my guidance to finish this work.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

III

ACKNOWLEDGMENT

I would like to express my deep gratitude to Dr. Amjad Hudaib and Dr. Bassam Hammo

for their support, patience and guidance to finish this work.

I would also like to thank ESKADENIA Software Solution and especially Mrs. Doha

Salah for giving me the opportunity to pursue my higher education.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

IV

LIST OF CONTENTS

DEDICATION... II

ACKNOWLEDGMENT.. III

LIST OF CONTENT………………………………………………………..………… IV

LIST OF TABLES...…………………………………………………………………... VI

LIST OF FIGURES…………………………………………..……………………… VII

LIST OF ABBREVIATIONS…...……………………………………………………. XI

LIST OF APPENDICES…………………………………………………………...... XII

ABSTRACT……...……………….......……......……………………….…………… XIII

1. INTRODUCTION...1

1.1 PROBLEM OVERVIEW ...1

1.2 THE SIGNIFICANCE OF THE STUDY..2

1.3 RESEARCH OBJECTIVES ..2

1.4 THESIS ORGANIZATION ..3

2. LITERATURE REVIEW...4

2.1 SOFTWARE ENGINEERING AND THE SOFTWARE PROCESS ...4

2.1.1 Software Specification..5

2.1.2 Requirements Specification Document...7

2.2 A BACKGROUND ON UML AND XML ..8

2.2.1 UML (Unified Modeling Language) ..9

2.2.2 XML (eXtensible Markup Language)...10

2.2.3 Combining UML with XML..12

2.3 NLP (NATURAL LANGUAGE PROCESSING) ...13

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

V

2.4 RELATED WORKS ...13

3. FRAMEWORK OVERVIEW ...18

3.1 THE FRAMEWORK DATA VIEW...18

3.2 THE FRAMEWORK ARCHITECTURE VIEW ...19

3.3 THE FRAMEWORK COMPONENTS VIEW ..22

4. EXPERIMENTING WITH THE FRAMEWORK..32

4.1 THE TEST BED ..32

4.2 CONDUCTING THE EXPERIMENTS..33

4.2.1 Test Bed from Previous Researches ...33

4.2.1.1 The Dining Philosophers Requirements Document34

4.2.1.2 The Bank System Requirements Document..38

4.2.1.3 The Lift System Requirements Document ..40

4.2.2 Test Bed from Students’..43

4.2.2.1 The Hotel Reservation System Requirements Document44

4.2.2.2 The Therapy Center Requirements Document..45

4.2.2.3 The School System Requirements Document ...46

4.2.2.4 The Construction System Requirements Document47

4.2.2.5 The Book Store System Requirements Document48

4.2.2.6 The Supermarket System Requirements Document..................................48

4.2.3 Discussion ..49

5. CONCLUSIONS AND FUTURE WORKS ..54

5.1 CONCLUSIONS ..54

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

VI

5.2 FUTURE WORKS ...55

REFERENCES ..57

Appendix B: Elevator Requirements Document ..71

Appendix C: Hotel Reservation Requirements Document..74

Appendix D: Therapy Center Requirements Document ...77

Appendix E: School system Requirements Document...78

Appendix F: Construction System Requirements Document80

Appendix G: Book Store Requirements Document ...82

Appendix H: Supermarket Requirements Document..83

ABSTRACT in (ARABIC)……..84

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

VII

LIST OF TABLES

Table

Number

Table Name Page

1 The dining philosopher requirements document experiment

comparison between our work and the previous research work

37

2 The bank system requirements document experiment comparison

between our work and the previous research work

39

3 The lift system requirements document experiment comparison

between our work and the previous research work

42

4 A comparison of the objects identified in our work and previous

researches work

50

5 A comparison of the attributes identified in our work and previous

researches work

50

6 A comparison of the relations identified in our work and previous

researches work

51

7 A comparison of the ability to generate natural language out of class

diagrams

51

8 A comparison of the objects and attributes identified after running

the experiments with and without preprocessing

52

9 A comparison of the relations identified after running the

experiments with and without preprocessing

53

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

VIII

LIST OF FIGURES

Figure

Number

Figure Name Page

1
A class diagram for the car object generated using IBM

Rational Rose
10

2 XML representations describing the car object of Figure 1 11

3 XML schema describing the car XML of Figure 2 11

4
A simplified representation for the UML metamodel describing

the class-attribute relation
12

5 XML schema describing the car XML of Figure 4 13

6 The Framework high level architecture 21

7
Flow diagram showing the processes and data conversions in

the framework
22

8 Bank requirements checked by Microsoft word 23

9 Bank XML requirements output of NLP 26

10 Snapshots after compound nouns resolution 27

11 Snapshots after collections resolution 28

12 Snapshots after pronoun resolution 28

13 Snapshots after connector resolution 28

14 Dinning philosopher requirements document 34

15 Dinning philosopher XML schema 35

16 Dinning philosopher UML model 36

17 Dinning philosopher reversed natural language 36

18 Bank system requirements document 38

19 Lift system requirements document 40

20
Hotel reservation system requirements document without

preprocessing
44

21 Therapy center requirements document without preprocessing 45

22 School system requirements document without preprocessing 46

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

IX

23
Construction system requirements document without

preprocessing
47

24
Book store system requirements document without

preprocessing
48

25
Supermarket system requirements document without

preprocessing
49

A1 Bank system XML schema 68

A2 Bank system UML model 69

A3 Bank system reversed natural language 70

B1 Lift system XML schema 72

B2 Lift system UML model 73

B3 Lift system reversed natural language 73

C1 Hotel reservation system UML model 74

C2
Hotel reservation system reversed and preprocessed

requirements
75

C3 Hotel reservation system UML model after preprocessing 76

D1 Therapy center UML model 77

D2 Therapy center reversed and preprocessed requirements 77

D3 Therapy center UML model after preprocessing 77

E1 School system UML model 78

E2 School system reversed and preprocessed requirements 78

E3 School system UML model after preprocessing 79

F1 Construction system UML model 80

F2 Construction system reversed and preprocessed requirements 81

F3 Construction system UML model after preprocessing 81

G1 Book store system UML model 82

G2 Book store system reversed and preprocessed requirements 82

G3 Book store system UML model after preprocessing 82

H1 Supermarket system UML model 83

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

X

H2 Supermarket system reversed and preprocessed requirements 83

H3 Supermarket system UML model after preprocessing 83

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

XI

LIST OF ABBREVIATIONS

Abbreviation Description

BMDATC Ballistic Missile Defense Advance Technology Center

DID Data Item Description

GSFC Goddard Space Flight Center

IEEE Institute of Electrical and Electronics Engineers

KBNL Knowledge-Based Natural Language

MIMB Meta Integration Model Bridge

NASA National Aeronautics and Space Administration

NLP Natural Language Processing

SATC Software Assurance Technology Center

TLG Two Level Grammar

TRAM A Tool for Requirements and Architecture

Management

UML Unified Modeling Language

VDM Vienna Development Model

XMI XML Metadata Interchange

XML eXtensible Markup Language

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

XII

LIST OF APPENDICES

Appendix

Number

Appendix Name Page

A Bank Requirements Document 61

B Elevator Requirements Document 71

C Hotel Reservation Requirements Document 74

D Therapy Center Requirements Document 77

E School system Requirements Document 78

F Construction System Requirements Document 80

G Book Store Requirements Document 82

H Supermarket Requirements Document 83

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

XIII

EXTRACTING SOFTWARE REQUIREMENTS SPECIFICATION: A NATURAL

LANGUAGE APPROACH

By

Yara Alkhader

Supervisor

Dr. Amjad Hudaib

Co-supervisor

Dr. Bassam Hammo

ABSTRACT

This thesis expresses the possibility of automating the conversion of requirements

expressed in natural language to a class diagram, and to reverse the conversion from a class

diagram to natural language with a minimum data loss.

The driving theory behind this study is that semantical aspects are independent of the

language presenting it. This means that one can describe the same semantics using

different languages.

In this thesis, we suggested and implemented a framework, which is capable of processing

requirements expressed in English natural language and generating an XML representation

for it. The target XML representation is mapped into a model using a rule based functional

analyzer whereas this model can be mapped back to XML. The XML representation serves

as our framework repository.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

XIV

The needs for such automation can be summarized as follows:

First, we can benefit from specification reusability were the requirements are kept to date

with the system at hand.

Second, time efficiency when time is always a constraint while building a project.

Third, experience unavailability when a competent requirement engineer is not available to

design and model the requirements.

We tested our framework thoroughly using detailed test cases to illustrate our framework

capabilities.

The test bed collected for the experiments was gathered from different domains some of

which are scientific while others are collected from students taking an undergraduate

Software Engineering course at the University of Jordan. The collected specification

documents cover distinct subjects and vary in their English language quality and

complexity.

The results of the experiments indicated that the suggested framework can be used for

modeling requirements and maintaining specifications documents. In addition, it can be

used in requirements elicitation as it showed a high percentage in identifying objects and

attributes.

The framework is characterized of being extensible which will enable the addition of

continuous enhancements to promote it to a full functional system.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

1

1. INTRODUCTION

Building a software is a continuous process. The ultimate goal of producing a software

system is to realize the customers’ needs. In this sense, development of the software is a

progressive refinement from one abstraction level to another; where customer

requirements are the most abstract level, and the software itself is the most concrete.

Requirements’ engineering is inherently a continuous process. Its output specification

document is subjected to continuous evolution reflecting the changes in the world it

describes.

Based on these ideas, we began to investigate the possibility of automating the process of

modeling the requirements and the process of updating it.

1.1 Problem Overview

Natural language requirements suffer from being ambiguous, inconsistent and incomplete.

Modeling them requires a considerable level of experience; which might not be available

all the time.

 Maintaining and evolving the specification document is expensive in the sense that

updates can be conducted at varying levels of abstraction in the software process, and all

updates must be propagated and traced forward to the software and backward to the

specification.

Propagating updates is very important to the software process in the sense that it ensures

consistency between specification and other levels of abstraction revealing a reusable

maintainable specification document consistent with the software it describes.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

2

1.2 The Significance of the Study

The importance of this study comes from the importance of the specifications document to

the software production. Engineers working on software may lack certain experiences, or

the budget of the project may not cover the expenses of hiring highly experienced staff.

The collected requirements are subject to continuous change, where time constitutes a

constant dilemma that compromises the importance of keeping requirements up to date

with the changes, while finishing the system on time. All those facts make the process of

modeling and maintaining the specification a very good candidate to be automated.

Our suggested framework uses a set of rules, which reflect the basic knowledge that a

requirements engineer uses in order to manually model and maintain requirements. In that

sense modeling can precede without the need for experts and time can be saved by

lowering the time spent on carrying out the updates manually.

1.3 Research Objectives

The main objective of our work is to build a framework that takes natural language

requirements as its input and is capable of:

1. Generating a class diagram for the requirements.

2. Reversing the generated class diagram back to natural language requirements.

The English language was our choice of the natural languages our framework can support.

However support for other natural language will be implemented in future works.

Our main contributions in this work are:

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

3

1. The creation of a framework, which is capable of modeling requirements and

reverses engineering the model into natural language.

2. Providing the requirements engineers with a framework, which enables them to

elicitate objects related to the system at hand.

3. Optimize the time consumed for modeling requirements and maintaining them.

1.4 Thesis Organization

This thesis is organized as follows: chapter two gives a literature review. An overview of

the software process and the specifications document is presented, along with some back

ground knowledge on UML and XML. In addition, several works and researches related to

this thesis are reviewed. Chapter three introduces the framework and elaborates on its

architecture and design. Chapter four presents the experiments conducted using the

framework including data acquisition, testing and results discussion. Finally, chapter five

expresses the conclusions of the research along with future works and enhancements.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

4

2. LITERATURE REVIEW

In this chapter, we review some of the previous work that is related to our research. The

software process and the requirements engineering process are both overviewed; a

definition of a good specification document is introduced. We also present some

background on UML (Unified Modeling Language) and XML (eXtensible Markup

Language).

2.1 Software Engineering and the Software Process

The notion of software engineering was introduced in the late 60’s at a conference

discussing what was then called the “software crisis”. The crisis as explained in (Naur and

Randell, 1968) was the result of the introduction of the third generation computer

hardware, which made more complex software applicable. Thereby the need to combine

both computer science and engineering methodology became necessary and resulted in the

foundation of software engineering (Broy, 2006).

Thus, software engineering can be thought of as establishing and using sound engineering

principles to generate software which is reliable cost effective and works on real machines

(Leffingwell and Widrig, 2003).

IEEE software engineering definition (IEEE, 1998) suggested that software has a life cycle

starting from its creation until its end. The software life cycle proceeds as a systematic set

of activities. These activities and their direct and indirect results leading to the production

of software are exactly what software process is all about (Sommerville, 2004) (Pressman

R., 2005).

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

5

There are some variations to the set of activities that a software process can have. However

the main activities such as: software specification, software design and implementation,

software validation and software evolution; remain common to all model of the process

(Sommerville, 2004) (Pressman R., 2005).

2.1.1 Software Specification

Software specification also known as requirements engineering is concerned with

establishing the required service from the system as well as the constraints on the system

operations and development (Sommerville, 2004). Several definitions have been proposed

for software specification, but the most referenced one is the one proposed in (Zave, 1997)

which highlights a couple of important points:

• A system is a realization of real-world goals, thus those precise goals represent the

basis for analyzing and validating the system requirements.

• A system evolves overtime emphasizing the reality of a changing world and its

effect on the system specification.

• The requirement engineering is an iterative process; it is often regarded as a front-

end activity in the software process.

The core activities in the requirement engineering process are (Wiegers, 2003):

• Eliciting requirements:

The main focus of eliciting requirements is to identify the purpose of software, any

system has goals which are the services and needs required by its customers, To

find out what are the system goals one must start by identifying system boundaries

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

6

and stakeholders (all interacting parties with the software). This will facilitate the

recognition, understanding and classifying of requirements.

The core of elicitation is to establish commutation between requirement engineers and

system stakeholders. Requirement elicitation is an art and the requirement engineer must

have high communication skills such as filtered listening, the ability to describe and

explain, and the ability to crab new abstract concepts and must have the interest in solving

other people problems (Callele and Makaroff, 2006).

• Modeling and analyzing requirements:

Modeling is the construction of abstract descriptions that are amenable to

interpretation. Requirements engineers may understand the requirements but they

may not be able to communicate them. Modeling solved such problems by

communicating requirements using abstract notations annotated with natural

language. The more precise those notations are the less annotation is needed.

Different modeling approaches exist such as: structured, formal and object oriented

modeling. Each of them offers different analysis and reasoning power. One must

choose the most appropriate approach.

• Communicating requirements:

Requirements are structured and modeled into written documents and diagrams.

The output of the requirements specification plays an important role ensuring clear

communication of requirements.

Different standards exist for the requirements specification document where each

of them provides guideline in structuring requirements. However, there are the

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

7

IEEE Software Requirement Specification (IEEE, 1998) and the NASA DID

Requirements (NASA).

• Agreeing requirements:

Agreeing requirements is achieved through validating them, where validation

means that requirements conform to what the customer wants. Requirement

validation is curial to system acceptance as they guarantee that the system to be

developed is what the customer had in mind.

• Evolving requirements:

Software requirement was first elicited from real-world goals, as real-world goals

evolve so must its requirements. Those changes must be carried out to the

requirements specification as well. Tracing, monitoring and managing

requirements are key concept in requirements evolution.

2.1.2 Requirements Specification Document

The requirements specification is a tool for communication between stakeholders. For this

communication to be successful, the requirements specification document must be

characterized as follows (Wilson et al., 1997):

• Complete:

Defines precisely all real world situations that will be encountered and how to

respond to them.

• Consistent:

No conflict between individual requirement statements specifying behavioral and

constraint properties.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

8

• Correct:

Identify accurately and precisely the individual conditions and limitations of all

situations.

• Modifiable:

Requirements must be structured into related chunks, limiting the side effect for

any update.

• Ranked:

Different requirements have different priority and the document must be able to

convey this prioritization.

• Traceable:

Requirements must be uniquely identified, so it can be linked and traced forward

into development and backward into elicitation.

• Unambiguous:

Each requirement must have one interpretation -one meaning-.

• Valid and Verifiable:

If all stakeholders can understand, analyze and are able to accepts and prove

requirements then those requirements are valid, if any level of requirements

abstraction is consistent with other levels of abstraction, then it is verifiable.

2.2 A Background on UML and XML

In this section a background on both UML (Unified Modeling Language) and XML

(eXtensible Markup Language) is presented. UML and XML notations are used

thoroughly in our research. A good resource to read more about UML and XML is

(Jacobson et al., 1999) and (Hunter et al., 2004).

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

9

2.2.1 UML (Unified Modeling Language)

UML is visual notation used for modeling software (Jacobson et al., 1999). Modeling can

be thought of as a simplified description of a system, whereas a description means that the

model forms some kind of representation of the system; not the system it self. As a matter

of fact the formed description is considered as a simplified representation of a system, this

representation hides the complexity of the system by exposing some aspects of a system

graphically while abstracting others. This simplified representation assists the software

engineer in understanding and reasoning about the system; humans proved to be more

efficient in understanding ideas expressed graphically.

Different UML diagrams that can be used for system analysis and design exist. Among

those we are particularly interested in the class diagram model, which is an object oriented

view of a particular system (Rambaugh et al., 1999).

The basic building block in the class diagram is the class. A class has a name and is

composed of a set of attributes and a set of operations working on these attributes. Classes

represent real world objects and their attributes represent their state while their operations

transform the object from one state to another. Classes are extracted from a statement of

system problem. They represent sets of objects and operations from system domain (Boggs

and Boggs, 1999).

Classes are connected to other classes through relationships such as aggregation and

inheritance. Inheritance is the relationship declaring that one class is a specialization of

another class. Aggregation is the relationship when one class is a collection of other

classes as its subparts.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

10

UML is becoming the de-facto standard for modeling (Boggs and Boggs, 1999). It is

supported by a vast number of modeling tools (Boggs and Boggs., 1999), (VTC). Those

tools not only have a digitized graphical view of a model but they also offer tremendous

advantages of which most importantly they understand the model helping the designer

making designs.

On the other hand, one of the major disadvantages for these tools is that the data in the

model is incorporated with graphical representation data such as colors and position on

screen. Those additions to the model disable the interoperability of the model between

different tools; the model is only understandable in the tool which generated it (Laird,

2001).

An example of a UML model representing a car object is shown in Figure 1. This model is

generated by the IBM Rational Rose © tool. The class is divided into three parts, where

the first part holds the name of the object; the second holds the attributes and the last holds

the operations. In Figure 1 the name of the object is Car, while the attributes are namely:

Doors and Tires, the object presented in the figure has no operations thus its operation part

is empty.

Car

<<Door>> Doors

<<Tire>> Tires

Figure 1: A class diagram for the car object generated using IBM Rational Rose

2.2.2 XML (eXtensible Markup Language)

XML is a mark up language. It serves as metalanguage, which means a language that

describes another language. The main concern of XML is the presentation of structured

data (Hunter et al., 2004).

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

11

XML is a mechanism for storing structural data in text files. As a matter of fact it becomes

the mainstream for data warehousing and exchange. The power of XML lies in its

interoperability and extensibility.

An XML file presents data in a hierarchical tree format. The first line in an XML

document is an XML declaration. It is followed by a set of XML nodes.

An XML schema declares the rules to which an XML file must obey (Hunter et al., 2004).

An XML schema as its name suggests is written using XML, it permits complex validation

for the XML file. An example of an XML file is given in Figure 2. The file contains an

XML representation of the car structure presented in Figure 1.

<?xml version="1.0" encoding="UTF-8"?>
<car xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation=" s.xsd">
 <doors/>
 <tires/>
</car>

Figure 2: XML representations describing the car object of Figure 1

The car XML file conforms to the car XML schema shown in Figure 3. Any variation of

the car XML to its XML schema is considered as unacceptable.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <xs:element name="car">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="doors"/>
 <xs:element ref="tires"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="doors">
 <xs:complexType/>
 </xs:element>
 <xs:element name="tires">
 <xs:complexType/>
 </xs:element>
</xs:schema>

Figure 3: XML schema describing the car XML of Figure 2

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

12

2.2.3 Combining UML with XML

UML and XML are both standards. Each one is useful in a different way. UML is used for

modeling, while XML is used for data exchange. The question arises here is there any use

of combining UML with XML?

The answer to this question would be yes. As we have mentioned before that UML models

generated by UML modeling tools lack the trait of interoperability while interoperability is

a key factor in large scale software. (Laird, 2001).

The UML language is modeled using the UML metamodel, which is a UML model

describing the UML language. This metamodel as all UML models have multiple views to

which the XML schema is considered as its precise view. Thus this XML schema

describing the UML metamodel serves as a model that describes the rules to which an

XML structure must obey in order to be valid.

In this sense the more detailed XML structure conforming to the XML schema describing

the UML metamodel can be transformed into the less detailed UML. There exist a number

of tools capable of carrying out this transformation automatically (Rambaugh et al., 1999)

(Meta, 2006).

 Figure 4 presents a simplified metamodel describing the relation between classes and

attributes in UML models. While Figure 5 presents the XML schema describing the model

in Figure 1. Local elements in the schema depict attributes while global elements depict

classes (Marchal, 2004).

Class Attribute

Figure 4: A simplified representation for the UML metamodel describing the class-attribute relation

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

13

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="Attribute">
 </xs:complexType>
 <xs:complexType name="Class">
 <xs:sequence>
 <xs:element ref="Attribute" minOccurs="2147483647" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Attribute" type="Attribute">
 <xs:annotation>
 <xs:documentation/>
 </xs:annotation>
 </xs:element>
 <xs:element name="Class" type="Class">
 <xs:annotation>
 <xs:documentation/>
 </xs:annotation>
 </xs:element>
</xs:schema>

Figure 5: XML schema describing the car XML of Figure 4

2.3 NLP (Natural Language Processing)

Natural languages are tools of communication. Studying natural languages, one can

realizes that linguistics structures are related to world structures for example objects in

world structure are represented as nouns in linguistics structures. The goal of natural

language processing is producing computational representations based on the relationships

existing between linguistic structures and a computation model representing the world

structure such as the object oriented class model.

2.4 Related Works

The abstract nature of software and the vast variety of problems that admit to it was the

driving force for repeatedly recognizing requirement engineering importance over the past

decades 25 years (Mannion and Keepence, 1995).

Quality plays a significant role in software creation, where a high quality requirement

specification results in creating a high quality software system. Consistency, completeness

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

14

and ambiguity are all essential characteristics of a high quality requirement (Bell and

Thayer, 1976).

U.S Army Ballistic Missile Defense Advance Technology Center (BMDATC) conducted a

study targeting the identification and resolution of fundamental problems plaguing

software community. The study introduced a technique for verifying system specifications

before initiating software design; emphasizing the importance of software requirement

specification quality, where quality measures to what extend the software apply to its

customer needs (Belford et al., 1976).

Over 8000 projects in 350 US companies were surveyed to reveal that one half of them

suffer cost overrun, software significant delays and incomplete functionalities (Standish,

1995).

Managing requirements and their tractability to the software are key factors in system

development and evolution. TRAM a tool for managing software requirements and system

architecture and the tractability between them was introduced in (Han, 2001). TRAM

primary objective is being practical with no overhead.

The cost of late correction to requirements can be 200 times more than those during

requirements engineering. Accordingly the earlier they are identified the easier they are

fixed (Boehm, 1981).

The Goddard Space Flight Center (GSFC) Software Assurance Technology Center

(SATC) developed a tool that assesses requirements specified in Natural Language using

quality indicators. The tool generates a report indicating requirements to be improved

(Wilson et al., 1997).

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

15

Formal languages, semiformal language and informal languages have all been used in

software requirement specification document, the latter being the most wildly used (Lee,

2003). However; hybrid representations also exist; an integrating of both formal and

informal representation was suggested in (Duffy et al., 1995) where formal requirements

are annotated with natural language comments.

Natural languages can be ambiguous, inconsistent and incorrect (Wilson et al., 1997), none

the less it remains the most natural thus preferable way of communication requirements

between both software engineers and software clients alike (Ambriola and Gervasi, 2000).

Automating the conversions between informal natural languages and formal ones became

evident. Not only had it allowed the software requirements to be viewed in a user friendly

way but also the conversion allowed the requirements to be viewed in a developer friendly

way as well. In (Lee, 2003) natural language was transformed into the formal VDM++

language using TLG to break the gab between formal and informal languages. Their work

targeted the elimination of the inherent natural language problems and automated the

management of formal requirements keeping them compatible with their natural language

counterpart.

In (Presland and Hennell, 1986) they investigated the ability to determine software

functionalities from software requirements specifications expressed in natural languages.

They illustrated the deficiencies and pointed the difficulties in processing natural

languages. The objective of the study was to develop criteria for identifying functions. In

their work they illustrated that the use of a simple method of determining functions is not

productive.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

16

In (Barnett et al., 1990) a Knowledge-Based Natural Language System (KBNL) was

introduced. It presumes the existence of a model that describes the world and how

language relates to the world. The system parses the English expression analysis them and

then if converts them into the knowledge base representation.

Requirements engineering supporting environment was developed in (Ambriola and

Gervasi, 2000). The interactive environment given requirements written in natural

languages is used to analyze and synthesize different views using one shared repository

and multiple modeling and viewing components.

Using XML the tangibility of natural language is improved for the automation of natural

language translation into formal language (Lee and Bryant, 2003).

The language 4W is a constraint natural language proposed by (Perez-Gonzalez and

Kalita, 2002). In their work they automated the transformation of natural language into the

semiformal UML using role poset technique, which is a conceptual framework used to

produce object oriented static views. They translated natural language requirement into

4W language and then used the generated set of requirements as input to their automation

process.

Software development process from natural language specification was a process

developed in 1989 (Saeki et al., 1989). In their work natural language was used to derive

incrementally a formal specification through a design-elaborate cycle. The system model is

extracted in the design phase from the informal English. Each word such as noun and verb

in natural language sentence is associated with a software concept. Elaboration is the

refinement of the natural language description based on the derived model in the design

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

17

phase. It is through the iterative cycling between the design and elaborate phases, the

formal description starts to take form.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

18

3. FRAMEWORK OVERVIEW

This chapter introduces the concept behind building our framework. It also gives an

overview of its design and the high level architecture.

 3.1 The Framework Data View

The inputted data to our framework is natural language requirements expressed in the

English language. While the output of our framework is a class diagram model

representing those requirements. The transformation from natural language into

semiformal UML notations was possible due to the fact that: requirements weather

expressed in formal, semiformal or informal languages assume certain linguistic aspects

such as lexical, syntactical, semantical and pragmatical aspects.

Linguistic form of requirements

The following lists the linguistic aspects of the requirements expressed in natural language

vs. semiformal language:

• Lexical aspects

Lexical aspects are applicable at the tokens level in the informal natural language,

and labels level on the semiformal class diagram model. Each relevant unit (token,

label) is of equivalent meaning in both presentations

• Syntactical aspects

Syntactical aspects present the grammar by which one can group lexical units into

well formed sentences or models.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

19

• Semantical aspects

Semantical aspects present the assumed meaning of a sentence or a model where

the underlying semantic is independent of the language presenting it.

• Pragmatical aspects

Substantial amount of information can be carried out between the lines. The

choices of words or the particular layout of a diagram can infer different meanings

in different contexts.

 3.2 The Framework Architecture View

The main objectives we are targeting from the suggested framework are: to be able to

generate class diagrams out of natural language requirements and to generate natural

language requirements out of class diagrams. In this sense our framework should accepts

natural language requirements as input, it should be able to store it and produce class

diagrams for it. In this sense the set of requirements our framework must satisfy became

clear. We summarize these requirements as follows:

• The framework must be able to accept requirements documents expressed in

natural language provided that the documents are both well formed and well

structured.

The presented framework accepts requirements documents written in English, other

languages can be adopted in the future. The documents must be structured into

paragraphs were a paragraph contains related data. Non related data are separated

into separate paragraphs. The documents should be lexically and syntactically

correct in terms of grammar, spelling and punctuations.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

20

• The framework must be able to store and retrieve requirements.

The presented framework accepts documents in text format and transform them

into XML format. The output of the transformation is stored in a repository on the

filing system and from this repository the requirements are synthesized.

• The framework must be able to present class diagrams for the stored

requirements.

The presented framework should be able to provide a class diagram view for the

requirements document. The generation of the class diagram proceeds iteratively

from the XML requirements version.

• The framework must be able to maintain the contextual meaning and lexical

content as far as possible.

The presented framework must be able to transform the requirements forward into

XML form and from XML form backward to natural language with the minimum

changes possible in reference to the original requirements document. This is

achievable by saving all the processing output as annotation to the XML file. In

this way the lexical content of the requirements as well as its contextual meaning is

intact so it is preserved.

• The framework must be extensible.

The framework presented must allow one to extend it by adding, updating or

replacing components.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

21

Framework architecture

The main components of our framework are shown in Figure 6. In addition, we have used

some tools such as The GATE (Cunningham et al., 2005) and (Meta Integration Model

Bridge) MIMB (Meta, 2006). We will explain the tools and how we used them is section

3.3.

The framework interacts with three repositories:

• The natural language requirements repository: this is used to store the requirements

before processing them in the system as well as after preprocessing and it also

stores the requirements generated from the reverse engineering process.

• The XML requirements repository: this is used to store the intermediate processing

outputted from the framework core components.

• The UML class diagram repository: this is used to store the class diagrams

generated from the MIMB tool.

The preprocessor and the core functional components will be illustrated in details in

section 3.3.

Figure 6: The Framework high level architecture

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

22

3.3 The Framework Components View

In Figure 7, we express the data processing components and how data is converted in our

framework. We illustrate the process using a subset of a bank requirements document

borrowed from (Lee, 2003).

NL Preprocessor
NL

Requirements

XML

Requirements

Preprocessed

NL

Requirements

Rule Based Functional

Analyzer

XML

Requirements

XML Schema Mapper

Natural Language

Extractor

NL Processor

Manual Domain

Processing

XML

Requirments

XML SchemaMIMB
UML Class

Diagram

Figure 7: Flow diagram showing the processes and data conversions in the framework

 A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

23

Our framework has the following data processing components:

a. Preprocessing component

This is an optional stage in the framework. Its main objective is to produce a

natural language document which is well structured and well formed.

Well formed documents are ones that have no spelling errors and are

grammatically sound. While well structured means that documents are well

paragraphed and each paragraph contains only related information.

Preprocessing refines natural language requirements to improve their quality

and to make them ready for automated processing. Accordingly the better

quality the requirements are the less preprocessing is needed.

Basic functionalities

A document is first checked by a spell checker and then by a syntax checker. In

our work we chose to use Microsoft word for spell and syntax checking.

Misspelled words, wrong syntaxes are highlighted for manual correction taken

care of by the software engineer. Our choice of limiting the preprocessing to

lexical and syntactical checks can be justified by the nature of specification

documents, which assumes being revised and well written.

Figure 8 shows the subset of the bank requirements, which will be used to

explain our framework functionalities (Lee, 2003).

Bank verifies ID and PIN giving the balance in the following order. It selects the account from

the list of accounts where: the account ID equals the ID and the account PIN equals the PIN.

Figure 8: Bank requirements checked by Microsoft word

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

24

b. Natural language processing component

 “Natural language processing can be defined as a process to construct a formal

structure and meaning of sentence in a way that helps the computer to

understand the sentence” (Lee, 2003).

The main role of natural language processing is to parse each sentence to find

the part of speech for every token in the sentence and the role of each part in the

sentence.

Natural language processing undergoes a set of activities: natural language

requirements are first tokenized to determine the part of speech for each word.

The output of this process is then parsed to determine the role of each token in

the sentence.

Basic functionalities

In this component we use the GATE tool (Cunningham et al., 2005) along with

the Minipar (Cunningham et al., 2005) plug in to construct our natural language

processing model.

GATE is an infrastructure for developing and deploying software components

that process human language. While Minipar is a shallow parser developed as a

plugin component to GATE framework. Our choice of the GATE infrastructure

is based on the following facts:

• It is free and open source.

• It has been used in a wide number of researches.

• Its generated output is in the form of XML.

• It is written entirely in java and conforms to the java specifications.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

25

Our natural language processing model is an iterative one. The output of each

iteration is an XML representation of the natural language requirements. Each

word is annotated with its part of speech and its part of sentence respectively

The XML file represents our internal repository for natural language

requirements. This representation allows us to:

� Maintain the natural language with as less modification as

possible

This is actually possible as the result of processing is added to the

natural language tokens as annotations so those words stay intact.

� It is extensible where new annotation can be easily added

Adding or updating components to the framework can be easily

integrated as new annotation can be added to the generated XML,

which is extensible by nature.

� It enables the storage and retrieval of natural language

requirements

Storing and retrieving can be thought of as annotating each token

and removing the annotation respectively.

Domain knowledge must be provided as input to this phase. It improves

pragmatic analysis dramatically.

Domain knowledge is implemented in our framework as a manual process

where software engineers gets to remove redundant entities, resolve constructs

with similar meaning and group them together. This part can be automated in

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

26

future works but the samples applicable to our current framework are of

considerable size so automation was of no significant.

Figure 9 expresses the XML output of the natural language processor of the

requirements in Figure 8.

c. Rule based functional analyzer component

Rule based functional analyzer is a set of pluggable processes those processes

form the basis for our work. Each of the processes applies a specific rule; that

either helps or identify a functional specification.

The analyzer updates and modifies annotations and store the result into the

XML repository.

<paragraph>
 <Token category="NN" POS="s">Bank</Token>
 <Token category="NNS" POS="v">verifies</Token>
 <Token category="NNP" POS="obj">ID</Token>
 <Token category="CC">and</Token>
 <Token category="NNP">PIN</Token>
 <Token category="VBG">giving</Token>
 <Token category="DT">the</Token>
 <Token category="NN" POS="obj">balance</Token>
 <Token category="IN">in</Token>
 <Token category="DT">the</Token>
 <Token category="VBG">following</Token>
 <Token category="NN">order</Token>
 <Token category=".">.</Token>
 <Token category="PRP" POS="s">It</Token>
 <Token category="VBZ" POS="v">selects</Token>
 <Token category="DT">the</Token>
 <Token category="NN" POS="obj">account</Token>
 <Token category="IN">from</Token>
 <Token category="DT">the</Token>
 <Token category="NN">list</Token>
 <Token category="IN">of</Token>
 <Token category="NNS">accounts</Token>
 <Token category="WRB">where</Token>
 <Token category=":">:</Token>
 <Token category="DT">the</Token>
 <Token category="NN">acount</Token>
 <Token category="NNP" POS="s">ID</Token>
 <Token category="VBZ" POS="v">equals</Token>
 <Token category="DT">the</Token>
 <Token category="NNP" POS="obj">ID</Token>
 <Token category="CC">and</Token>
 <Token category="DT">the</Token>
 <Token category="NN">acount</Token>
 <Token category="NNP" POS="s">PIN</Token>
 <Token category="VBZ" POS="v">equals</Token>
 <Token category="DT">the</Token>
 <Token category="NNP" POS="obj">PIN</Token>
 <Token category=".">.</Token>
</paragraph>

Figure 9: Bank XML requirements output of NLP

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

27

Basic functionalities

Each analyzer process checks the requirements against a specific rule. Our

choice of the set of applicable rules was based on the most common problems

specific to specification documents as well as the relations our processing

model assumes which are namely: objects, attributes and actions; each rule in

the set helps in resolving a problem. other information existent in the natural

language requirements and not applicable to our processing model is discarded

(Lee, 2003) (Presland and Hennell, 1986). Thus the set of rules applied are the

following:

• Resolving compound nouns

A noun followed by another noun (ignoring determiners) is considered

as one compound noun, where the compound noun is annotated with

“NN” as its part of speech. The part of sentence annotation reflects the

first part of sentence attribute found.

The XML output of compound name resolution is depicted in Figure 10.

 <Token category="DT">the</Token>
 <Token category="NN" POS="s"> account ID</Token>
 <Token category="VBZ" POS="v">equals</Token>

Figure 10: Snapshots after compound nouns resolution

• Resolving collections of object

A singular noun followed by a proposition and a plural noun, or a

singular noun followed by a preposition which is followed by another

singular noun then another preposition and a plural noun, can be

considered as collections. For example: account in the list of accounts.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

28

Annotation proceeds as the preceding rule suggested taking into

consideration that determiners are also ignored.

The XML output of collection resolution is depicted in Figure 11.

 <Token category="DT">the</Token>
 <Token category="NN" POS="obj"> the account from the list of
 accounts</Token>

Figure 11: Snapshots after collections resolution

• Resolving pronouns

Pronouns can refer to either the preceding subject or the recently

referenced subject with the later having a higher priority than the

former. The pronoun is annotated with a tag indicating its reference.

The XML output of pronoun resolution is presented in Figure 12.

 <Token category="PRP" POS="s" ref="Bank">it</Token>
 <Token category="VBZ" POS="v">assigns</Token>

Figure 12: Snapshots after pronoun resolution

• Resolving connectors

If a noun is followed by a connector and then another noun it is

considered as a sentence connecter provided there is a verb coming

some where after the second noun and before the end of sentence.

Otherwise it is considered a noun connector. In case of sentence

connectors we add a tag indicating that. Else the two nouns are

considered as one compound noun.

The XML output of connector resolution is depicted in Figure 13.

 <Token category="NN" POS="s">Bank</Token>
 <Token category="NNS" POS="v">verifies</Token>
 <Token category="NNP" POS="obj">ID</Token>
 <Token category="CC" Conn="noun">and</Token>
 <Token category="NNP" POS="obj">PIN</Token>
 <Token category="VBG">giving</Token>
 <Token category="DT">the</Token>

Figure 13: Snapshots after connector resolution

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

29

• Resolving association and generalization

In resolving association and generalization we choose a subset of the

English language to be identified as a relation.

If an object is associated with another object then the framework

expects this to be written in the natural language requirements

precisely using the word (associated).

In case of generalization the framework expects the words: is a

generalization of, to be present in the natural language requirements to

be able to identify the relation.

In future work we plan to make the framework capable of identifying

relations without restricting the natural language to a fixed subset of

words.

d. XML Schema mapper

Our target of creating this process is to map XML requirements into an XML

schema representing UML. The schema can be later transformed to UML,

imported by a UML tool and displayed as a class diagram model.

The relevant set of nouns and verbs are first correlated as follows:

• Nouns occurring in same paragraph are considered relevant. This also

applies to verbs. The justification of this is based on our first assumption

of having a well written and well structured specification document.

• Verbs are excluded in this transformation as XML schema is capable of

representing the data but not the operations. In future work we plan on

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

30

using XMI (XML Metadata Interchange) instead as it is capable of

representing both data and operations.

• An ID is generated and added to both XML schema and XML file for

the sake of traceability in order to eliminate data lose caused by the

transformation from the more detailed XML to the less detailed UML.

Mapping is a bidirectional process; it can be forward from XML into UML or

backward from UML into XML.

Basic functionalities

The forward mapping proceeds by generating an XML schema file where each

mapped token is given an ID to be used for backward traceability. Then MIMB

(Meta Integration Model Bridge) tool (Meta, 2006) is used for transforming

XML schema into UML.

The backward mapping proceeds by transforming UML into XML schema. All

previous transformations are done using the MIMB tool. The XML schema is

then transformed into an XML representation for the natural language

requirements.

e. Natural language extractor

The XML presenting natural language requirements is used to extract natural

language sentences and paragraphs.

 The generated language is a one to one mapping between the XML and

language constructs; if no changes occurred on the UML model then the

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

31

generated document must present all the information available in the original

natural language requirements using simpler sentences.

Basic functionalities

The XML file presenting storage for the requirements is transformed into

natural language by eliminating all the XML annotations combining the result

into a text file, using a set of simple rules describing how to build simple

statements, for instance a singular name staring with a vowel is proceeded with

(an), while a singular name staring with any other letter is proceeded with (a).

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

32

4. EXPERIMENTING WITH THE FRAMEWORK

This chapter introduces the methodology of testing the framework along with the detailed

results and test cases. It also analyzes the results of the test cases.

4.1 The Test Bed

Our test bed of requirement documents is divided into two sets. The first set of documents

was collected from different academic researches. Each document has been used to

conduct a research similar to our work. The results of analyzing each document has been

compared with the original obtained from its resource. Those documents although varying

in subjects and in authors but all share some common features. They are well written using

well structured English sentences, and their content is fairly unambiguous.

The second set of requirement documents was collected from Computer Science students

in a Software Engineering course at the University of Jordan. Those students are both not

native speakers of the English language and are not well experienced in writing

requirements. Thus documents in set two are not well written; they lack correct

punctuations, and they are highly ambiguous.

The two sets are further classified according to the requirements sentences into three

categories: simple, intermediate and complex.

Simple documents are composed of simple sentences, whereas a simple sentence is a

sentence that carries out one atomic fact. Those sentences usually have a subject, a verb

and an object, and each ends with a fullstop.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

33

Intermediate documents are composed of more complicated sentences rather than simple

ones. An intermediate sentence is one that carries out more than one fact. It has one

subject, multiple verbs and objects, it may contain commas and it ends with a fullstop.

Complex documents are those composed of complex sentences. A complex sentence is a

sentence that carries out many facts. It could have many subjects, verbs and objects, it

contains commas and it ends with a fullstop.

4.2 Conducting the Experiments

Documents in the test bed were executed in a complexity ascending manner; starting from

the simplest and walking through the most complicated. Our first experiment starts with

the test bed extracted from previous academic researches.

4.2.1 Test Bed from Previous Researches

This test bed contains three requirements documents:

• The dining philosophers’ requirements document, conducted by (Perez-Gonzalez

and Kalita, 2002).

• The bank requirements document, conducted by (Lee, 2003).

• The elevator requirements document, conducted by (Saeki et al., 1989).

According to our proposed classification, the above documents are classified as follows:

the first one being the simplest while the others are the intermediate and complex

respectively. Documents have been inputted to our system as they have been originally

written without any modification.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

34

4.2.1.1 The Dining Philosophers Requirements Document

Conducting the Experiment

The requirements document for the dining philosophers (Perez-Gonzalez and Kalita, 2002)

depicted in Figure 14 describes the famous problem of the 5 philosophers and 5 forks

where each philosopher needs two forks to eat.

5 philosophers and 5 forks around a circular table. Each

philosopher can take 2 forks on either side of him. Each fork

may be either on the table or used by one philosopher. A

philosopher must take 2 forks to eat.
Figure 14: Dinning philosopher requirements document

The set of requirements in the requirements document are processed by our proposed

framework. The requirements are first processed by our NL processor to generate an XML

representation, and the XML representation is processed by our rule based functional

analyzer and mapped later on to an XML schema using our XML schema mapper.

The XML schema depicted in Figure 15 represents the requirements of the dinning

philosopher problem. This schema is generated by the system automatically. However

redundant entities should be eliminated. The process of eliminating redundancy identifies

words representing the same entities. For example, the words philosophers and philosopher

as well as forks and fork represent the same entity. In this step we erase forks and

philosophers from the schema.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="circular table">
 <xs:annotation>
 <xs:documentation>6, 6</xs:documentation>
 </xs:annotation>
 </xs:complexType>
 <xs:element name="circular table" type="circular table">
 <xs:annotation>
 <xs:documentation>6, 6</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="fork">

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

35

 <xs:annotation>
 <xs:documentation>17, 17</xs:documentation>
 </xs:annotation>
 <xs:attribute name="table">
 <xs:annotation>
 <xs:documentation>22, 22</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="philosopher">
 <xs:annotation>
 <xs:documentation>27, 27</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:complexType>
 <xs:element name="fork" type="fork">
 <xs:annotation>
 <xs:documentation>17, 17</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="forks">
 <xs:annotation>
 <xs:documentation>4, 4</xs:documentation>
 </xs:annotation>
 </xs:complexType>
 <xs:element name="forks" type="forks">
 <xs:annotation>
 <xs:documentation>4, 4</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="philosopher">
 <xs:annotation>
 <xs:documentation>8, 8</xs:documentation>
 </xs:annotation>
 <xs:attribute name="forks">
 <xs:annotation>
 <xs:documentation>12, 12</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="side of">
 <xs:annotation>
 <xs:documentation>14, 14</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 <xs:attribute name="forks">
 <xs:annotation>
 <xs:documentation>33, 33</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:complexType>
 <xs:element name="philosopher" type="philosopher">
 <xs:annotation>
 <xs:documentation>8, 8</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="philosophers">
 <xs:annotation>
 <xs:documentation>1, 1</xs:documentation>
 </xs:annotation>
 </xs:complexType>
 <xs:element name="philosophers" type="philosophers">
 <xs:annotation>
 <xs:documentation>1, 1</xs:documentation>
 </xs:annotation>
 </xs:element>
</xs:schema>

Figure 15: Dinning philosopher XML schema

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

36

The XML schema is then mapped using the MIMB (Meta, 2006) tool into the UML class

diagram depicted in Figure 16. The three boxes in the diagram represent the fork object,

the philosopher object and the table object. The fork object has two attributes, namely, the

fork is placed on a table and is used by a philosopher. On the other hand the philosopher

object has two attributes as well: the philosopher has two sides and the philosopher uses a

fork. The table object has no identified attributes.

philosopher

forks : Varchar

side of : Varchar

fork

table : Varchar

philosopher : Varchar

circular

table

Figure 16: Dinning philosopher UML model

Our framework is capable of converting the UML class diagram depicted in Figure 14 back

to natural language. This reverse engineering process produced the natural language

requirements depicted in Figure 17.

Each fork has a table,

Each fork has a philosopher.

Each philosopher has forks,

Each philosopher has a side of,

Each philosopher has forks.
Figure 17: Dinning philosopher reversed natural language

Results Analysis and Comparison

Now we compare our results with (Perez-Gonzalez and Kalita, 2002). In their work the

authors identified two namely objects fork and philosopher with a validation threshold of

50%. Other objects could be identified if a threshold of a lower percentage was selected.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

37

Both the fork object and the philosopher object contained a location attribute and they were

interconnected with the relation take; where a philosopher can take a fork. On the other

hand our work was able to identify three objects: philosopher, fork and table. The

philosopher object has two attributes fork and side and the fork object has two attributes

philosopher and table. The object fork having a philosopher attribute and the philosopher

object having a fork attribute resembles the association between the two objects, which

was identified in the original paper as the take relation. While the side and table attributes

resembles the attribute location which has been identified in the original paper as well. In

our work we were able to transform the generated model into natural language, which is a

one to one representation of the model and can be used for validating both user

requirements and the represented model. Here one can think of the reversed language as a

semiformal representation of the requirements where both the model and the language fall

into the same abstraction level thus comparing them is straight forward. While in the

original paper they used the inputted requirements for validating the model were both lie in

different layers of abstraction and comparing them is highly dependent on the person doing

the validation process. Accordingly validating them is relative, complex and error prone.

Table 1 summarizes the result comparison between our work and the previous research

work.

Table 1: The dining philosopher requirements document experiment comparison between our work

and the previous research work.

Criteria Our Results Research Results

No. of Objects Identified 3 2

No. of Attributes Identified 4 2

No. of Relations Identified 0 1

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

38

4.2.1.2 The Bank System Requirements Document

Conducting the Experiment

The requirements document for the bank system (Lee, 2003) depicted in Figure 18

describes a banking system where users have accounts and use ATM services.

Bank keeps list of accounts. It verifies ID and PIN giving the

balance and updates the balance with ID.

An account has three data fields: ID, PIN, and balance.

ID and PIN are integers, balance is a real number.

ATM has 3 service types: withdraw, deposit and balance

check.

For each service first it verifies ID and PIN from the bank

giving the balance.

ATM withdraws an amount with ID and PIN giving the

balance in the following sequence. If the amount is less than

or equal to the balance then it decreases the balance by the

amount. And then it updates the balance in the bank with ID.

ATM deposits an amount with ID and PIN giving the

balance in the following order. It increases the balance by

amount and then updates the balance in the bank with ID.

ATM checks the balance with ID and PIN giving the

balance.
Figure 18: Bank system requirements document

The XML schema generated after processing the requirements and then eliminating

redundant objects is listed in appendix A Figure A1. The UML model mapped from

generated schema in appendix A Figure A1 is listed in appendix A Figure A2. The natural

language requirements reversed engineered from the module in appendix A Figure A2 is

listed in appendix A Figure A3.

Results Analysis and Comparison

As discussed earlier the results of our work are compared with the results in (Lee, 2003).

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

39

In their work three objects were identified: bank, account and ATM. The bank object has

the attributes: account list, ID, PIN and balance. The account object has the attributes: ID,

PIN and balance. The ATM object has the attributes balance, amount, ID and PIN.

In our work we were able to identify the bank, ATM and account objects; the three of them

can be considered a like in both works. In addition our work as able to identify the ID, the

PIN and the balance as objects (data types). Identifying data types is of great value because

it is essential in representing new types and in validating the represented model. Further

more our work identifies the service object which can be considered as an abstraction

where all services shares a common interface. However in our work the amount was

wrongly identified as an object. For this example we also revered the model to natural

language which was used to represent the model in a more unambiguous fashion were both

the engineer and the client can share their understanding equally. Table 2 summarizes

results comparison between our work and the previous conducted research.

Table 2: The bank system requirements document experiment comparison between our work and the

previous research work.

Criteria Our Results Research Results

No. of Objects Identified 8 3

No. of Attributes Identified 29 11

No. of Relations Identified 0 0

A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

40

4.2.1.3 The Lift System Requirements Document

Conducting the Experiment

The requirements document for an elevator system (Saeki et al., 1989) listed at Figure 19

describes an elevator system installed in a building.

An n lift system is to be installed in a building with m floors.

The lift and the control mechanism are supplied by the

manufacturer.

The internal mechanisms of these are assumed.

The problem concerns the logic to move lifts between floors

according to the following constraints.

Each lift has a set of buttons, one for each floor.

These illuminate when pressed and cause the lift to visit the

corresponding floor.

The illumination is cancelled when the corresponding floor is

visited by the lift.

Each floor has two buttons, one to request an up-lift and one to

request a down-lift.

These buttons illuminate when pressed.

The illumination is cancelled when a lift visits the floor and is

either moving in the desired direction, or has no outstanding

requests.

In the later case, if both floor buttons are pressed only one

should be cancelled.

The algorithm to decide which to service should minimize the

waiting time for both requests.

When a lift has no requests to service, it should remain at its

final destination with its door closed and await further request.

All requests for lift from floors must be serviced eventually,

with all floors given equal priority.

All requests for floors within lifts must be serviced eventually,

with floors being serviced sequentially in the direction of

travel.

Each lift has an emergency button which, when pressed causes

a warning signal to be sent to the site manager.

The lift is then deemed out-of-service.

Each lift has a mechanism to cancel its out-of-service status.
Figure 19: Lift system requirements document

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

41

The XML schema generated after processing the requirements and then eliminating

redundant objects is listed in appendix B Figure B1. The UML model mapped from

generated schema in appendix B Figure B1 is listed in appendix B Figure B2. The natural

language requirements reversed engineered from the module in appendix B Figure B2 is

listed in appendix B Figure B3.

Results Analysis and Comparison

As with early tests the results of our work are compared with the results in (Saeki et al.,

1989). In their work the attributes lift button, direction, status and request were identified

while in our work the at tributes: manufacturer, buttons list, floor, priority, emergency

button, warning signal, site manager, mechanism, status, request, destination, and door

were identified.

We believe that although manufacturer, site manager and mechanism were listed at the

requirements and correctly identified, but they are of no importance to the scope so they

could be ignored. However the attributes priority, emergency button, warning signal,

destination and door were not identified in the original paper while they are of importance

to both the lift system and the completeness of the requirements. On the other hand in our

work we incorrectly were not able to identify the direction attribute as attribute for the lift

object.

The original paper introduce a template for writing requirements were an engineer after

analyzing the requirements and modeling them should manually write then into the

introduced template. While in our work we allow the engineer both automatic generations

of the requirements after reversing the model into natural language. And the flexibility to

express the requirements in any format while maintaining a simple structured language.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

42

Table 3 summarizes results comparison between our work and the previous conducted

research.

Table 3: The lift system requirements document experiment comparison between our work and the

previous research work.

Criteria Our Results Research Results

No. of Objects Identified 1 1

No. of Attributes Identified 12 4

No. of Relations Identified 0 0

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

43

4.2.2 Test Bed from Students’

This test bed contains six requirements documents:

• The hotel reservation requirements document.

• The therapy center requirements document.

• The school system requirements document.

• The construction system requirements document.

• The book store requirements document.

• The supermarket requirements document.

The first and second are the simplest while the third and fourth are the intermediate and the

other two are the complex ones.

Each of the documents in the set has been inputted into the system with and without

preprocessing. The more unambiguous and complete the requirements are the more

accurate the generated module is. Preprocessing stage aims at modifying those documents

from ambiguous into unambiguous ones. Preprocessing was executed at the model level

which is reversed into the natural language automatically. Then this document was

inputted into the system and the module was generated one more time, only this time it

represents the preprocessed document.

For this set we will only present the input and the module in the two cases with and

without preprocessing, intermediate steps are not listed.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

44

4.2.2.1 The Hotel Reservation System Requirements Document

Conducting the Experiment

Figure 20 depict the requirements collected describing the hotel reservation system. The

requirements were processed into an XML schema and then mapped into the UML class

diagram listed in appendix C Figure C1.

The hotel consists of a number of rooms.

Every room has a number, rate types, notes, status, occupancy type, TV status,

phone status, balcony status, and the number of room is unique.

Every customer has an SSN, first name, last name, address, home phone

number, mobile number, email, number of adults and children, can reserve one

or more rooms, and the SSN of the customer is unique.

Every reservation has a number, arrival date, departure date, reservation date,

payment method, sales tax, charges, amount paid, total payable and the number

of the reservation in unique.
Figure 20: Hotel reservation system requirements document without preprocessing

For this set of documents we conducted the experiment by first processing the

requirements without modifying them. And then after generating the class-diagram for the

requirements we added the modification at the model level thereby allowing our

framework to generate the modified natural language requirements automatically instead of

rewriting them.

 The UML class diagram listed in appendix C Figure C1 represents the generated model

for the requirements without any modification. The natural language reversed engineered

from the modified UML class diagram is presented appendix C Figure C2 and is processed

to the UML model presented in appendix C Figure C3.

A modification we added in our work to the class diagram was the addition of relations

Those relations were translated into natural language requirements and thus could be

mapped forward and back word into a model and natural language respectively. This

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

45

addition was due to the fact that those relations were not explicitly expressed in the natural

language provided and ignoring them would make the module incomplete.

However after the addition of relationships the generated language from the model had

those relations explicitly expressed thus those requirements became more clear and

unambiguous.

Results Analysis and Comparison

The generated model from the requirements without considering preprocessing was of very

good accuracy as all the objects and attributes were identified. Preprocessing the

requirements was not of great value as no direct effect was noticed on the represented

model. The fact that the original requirements was good written with simple sentences

made the accuracy quite evident.

4.2.2.2 The Therapy Center Requirements Document

Conducting the Experiment

Figure 21 depicts the requirements collected describing a therapy center. The requirements

were processed into an XML schema and then mapped into the UML class diagram listed

in appendix D Figure D1. The reversed engineered natural language requirements

generated after modifying the UML class diagram in appendix D Figure D1 is presented in

appendix D Figure D2 and its corresponding UML class diagram is presented in appendix

D Figure D3.

Make the patients reservations.

Produce work reports.

Add new patients to the system.

Retrieve patients files.

Arrange patients with therapists.
Figure 21: Therapy center requirements document without preprocessing

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

46

Results Analysis and Comparison

The generated model from the requirements without considering preprocessing was of

good accuracy as most of the objects and attributes were identified. However

preprocessing the requirements was of great value as the original sentences although

simple in structure but they failed to represent the system correctly. Therefore accuracy of

the model after preprocessing is quite evident.

4.2.2.3 The School System Requirements Document

Conducting the Experiment

Figure 22 depicts the requirements collected describing a school system. The requirements

were processed into an XML schema and then mapped into the UML class diagram listed

in appendix E Figure E1. The reversed engineered natural language requirements generated

after modifying the UML class diagram in appendix E Figure E1 is presented in appendix

E Figure E2 and its corresponding UML class diagram is presented in appendix E Figure

E3.

School contains teachers, manages, students, workers.

All the mentioned stakeholders are allowed to use the program.

The main target is to help the above beneficiaries to get needed

information, control the data and manage it depending on the level of

each user.
Figure 22: School system requirements document without preprocessing

Results Analysis and Comparison

The generated model from the requirements without considering preprocessing was of bad

accuracy as most of the objects and attributes were not identified. However; preprocessing

the requirements was of great value, as the original sentences failed in representing the

system correctly. Therefore accuracy of the model after preprocessing is quite evident.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

47

4.2.2.4 The Construction System Requirements Document

Conducting the Experiment

Figure 23 depicts the requirements collected describing a construction system. The

requirements were processed into an XML schema and then mapped into the UML class

diagram listed in appendix F Figure F1. The reversed engineered natural language

requirements generated after modifying the UML class diagram in appendix F Figure F1 is

presented in appendix F Figure F2 and its corresponding UML class diagram is presented

in appendix F Figure F3.

User requires a form to input the new employees, information.

User requires a form to input the new projects information.

User requires a form to input the sub-contractor information.

User requires a form to input the machine information.

User requires a form to input the payments information.

User requires a form to input the items taken from the store.

User requires a monthly report for the employee salary.

User requires daily report for machines working hours.

User requires a daily report for project working hours.
Figure 23: Construction system requirements document without preprocessing

Results Analysis and Comparison

The generated model from the requirements without considering preprocessing was of bad

accuracy as most of the objects and attributes were not identified. However; preprocessing

the requirements was of great value, as the original sentences failed in representing the

system correctly. Therefore accuracy of the model after preprocessing is quite evident.

A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

48

4.2.2.5 The Book Store System Requirements Document

Conducting the Experiment

Figure 24 depicts the requirements collected describing a book store system. The

requirements were processed into an XML schema and then mapped into the UML class

diagram listed in appendix G Figure G1. The reversed engineered natural language

requirements generated after modifying the UML class diagram in appendix G Figure G1

is presented in appendix G Figure G2 and its corresponding UML class diagram is

presented in appendix G Figure G3.

An employee can view the availability of any book to sell it.

And employee can register any customer and view his account at any time.

An employee can sell any book to any customer whether registered or not.

An employee can loan any book to customers who are registered.
Figure 24: Book store system requirements document without preprocessing

Results Analysis and Comparison

The generated model from the requirements without considering preprocessing was of bad

accuracy as most of the objects and attributes were not identified. However; preprocessing

the requirements was of great value, as the original sentences failed in representing the

system correctly. Therefore accuracy of the model after preprocessing is quite evident.

4.2.2.6 The Supermarket System Requirements Document

Conducting the Experiment

Figure 25 depicts the requirements collected describing a supermarket system. The

requirements were processed into an XML schema and then mapped into the UML class

diagram listed in appendix H Figure H1. The reversed engineered natural language

requirements generated after modifying the UML class diagram in appendix H Figure H1

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

49

is presented in appendix H Figure H2 and its corresponding UML class diagram is

presented in appendix H Figure H3.

The client logs in the system using his user name and password; while he

already specified during registration phase.

If the client fails to login 3-times; the system will block his account for 10-

minutes for security purposes.

client can restore his password; the client has to supply the email used in the

registration process and the password will be emailed to it.
Figure 25: Supermarket system requirements document without preprocessing

Results Analysis and Comparison

The generated model from the requirements without considering preprocessing was of bad

accuracy as most of the objects and attributes were not identified. However; preprocessing

the requirements was of great value, as the original sentences failed in representing the

system correctly. Therefore accuracy of the model after preprocessing is quite evident.

4.2.3 Discussion

After analyzing the results of each of the conducted experiment we arrived at the

following:

• Our framework was able to identify all objects identified in all of the previous

researches. Table 4 shows all the objects identified in the previous researches are

also identified in our work. Our frames work identified more objects than those

identified in previous researches thus the modeled requirements were more accurate

and complete.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

50

Table 4: A comparison of the objects identified in our work and previous researches work

Experiment Name Our Results Research Results

Dinning Philosophers’ The objects identified are:

philosopher, fork and table.

The objects identified are:

philosopher, fork.

Bank The objects identified are:

bank, account, ATM, the

data type ID, the data type

PIN, the data type balance

and the object amount.

The objects identified are:

bank, account and ATM.

Elevator The Object left was

identified.

The Object left was

identified.

• Our framework was able to identify most of the attributes identified in all of the

previous researches. Table 5 shows all the attributes identified in the previous

researches are also identified in our work. All the attributes identified in previous

researches were also identified in our work except for one attribute, which is the

direction in the elevator experiment.

Table 5: A comparison of the attributes identified in our work and previous researches work

Experiment Name Our Results Research Results

Dinning Philosophers’ The attributes identified:

philosopher, fork, side and

table.

The attribute identified in

both objects was location.

Bank The attributes identified:

service types, deposit,

balance check, ID, PIN,

bank, balance, amount,

sequence, order, updates

balance, account list, real

number, integer and data

fields.

The attributes identified:

Account list, ID, PIN,

balance and amount.

Elevator The attributes identified:

manufacturer, buttons list,

floor, priority, emergency

button, warning signal, site

manager, mechanism,

status, request, destination,

and door.

The attributes identified: lift

button, direction, status and

request. A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

51

• Our framework can identify relations if they were expressed using subset of

English natural language, thus while running the scientific set experiments without

preprocessing our framework was not able to identify any relation. However the

comparison results of identifying relations are presented in Table 6.

Table 6: A comparison of the relations identified in our work and previous researches work

Experiment Name Our Results Research Results

Dinning Philosophers’ None Take relation was

identified.

Bank None None

Elevator None None

• Our framework was capable of transforming the generated module back to natural

language enabling us to read the generated module in a natural way, while this was

not possible in the previous researches. Table 7 presents the comparison results in

turn of generating natural language requirements.

Table 7: A comparison of the ability to generate natural language out of class diagrams

Experiment Name Our Results Research Results

Dinning Philosophers’ Present Not present

Bank Present Not present

Elevator Present Not present

• The output generated from our framework is highly dependant on the quality of its

input. This is quite visible in Table 8 where good quality resulted in the

identification of all the objects and attributes present in the requirements documents

provided.

• Preprocessing requirements in the sense that poorly structured requirements are

converted to highly structured ones resulted in more accurate and complete output

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

52

from out framework. Table 8 expresses the difference between the results from

running the experiments with and without preprocessing.

Table 8: A comparison of the objects and attributes identified after running the experiments with and

without preprocessing

Experiment Name Without preprocessing With preprocessing

Hotel reservation Requirements of good

quality all objects and

attributes identified.

Requirements of good

quality all objects and

attributes identified.

Therapy center Requirements of good

quality all objects and

attributes identified.

Requirements of good

quality all objects and

attributes identified.

School system Requirements of poor

quality not all objects and

attributes were identified.

Requirements of good

quality all objects and

attributes identified.

Construction system Requirements of poor

quality not all objects and

attributes were identified.

Requirements of good

quality all objects and

attributes identified..

Book store Requirements of poor

quality not all objects and

attributes were identified.

Requirements of good

quality all objects and

attributes identified.

Supermarket system Requirements of poor

quality not all objects and

attributes were identified.

Requirements of good

quality all objects and

attributes identified.

• Our framework is capable of identifying relations ships if they were explicitly

expressed in the requirements. Table 9 expresses the relation ships identified while

running the experiments with and without preprocessing.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

53

Table 9: A comparison of the relations identified after running the experiments with and without

preprocessing

Experiment Name Without preprocessing With preprocessing

Hotel reservation No relations were

identified.

Relations were identified.

Therapy center No relations were

identified.

Relations were identified.

School system No relations were

identified.

Relations were identified.

Construction system No relations were

identified.

Relations were identified.

Book store No relations were

identified.

Relations were identified.

Supermarket system No relations were

identified.

Relations were identified.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

54

5. CONCLUSIONS AND FUTURE WORKS

This chapter presents some conclusions and recommended future works.

5.1 Conclusions

After running the experiments it was clear that the accuracy of the model generated is

determined by the quality of the requirements presented. The quality of the requirements as

mentioned earlier is measured by the level of completeness and unambiguity they posses.

For that reason the academic set has higher accuracy rates rather than the student set

excluding the output after preprocessing.

Our framework succeeded in identifying more objects and attributes than those were

identified in the original papers for the academic set. We consider this ability as a benefit

for elicitation what could form an important object and should be mentioned in the

requirements document and what is not. As the requirements document forms the contract

between the supplier and the client every entity in that document should be of value in the

module, if it is not it should not be in the document in the first place. Thus our framework

serve as a tool for analyzing requirements where one can identify objects and attributes and

work from that point into detailing their description and there relation to the described

system. One can also think of our framework as a tool that aids in the design process as it

can convert from natural language into a class diagram model. The framework can also be

used as a natural language generator or a class diagram explaining system, this usage is

possible because the built framework is capable of reverse engineering class diagrams into

natural language. The generated language from reverse engineering a class diagram is

characterized by being simple, accurate and complete. Last but not least our framework

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

55

can be used as an environment for maintaining both the model and the requirements

document where neither one becomes obsolete from the other.

5.2 Future Works

Despite of the good results obtained from the built framework, we think that many

enhancements are yet to be done aiming to build a system rather than a framework.

Recommended future work that may be done regarding to this thesis can be summarized as

follows:

• Enhancing the capabilities of our framework by adopting other natural languages

beside the English language.

• Enhancing the capabilities of the parser by building our own customized parser

than using a shallow one.

• Enhancing the system to model functional operation as well as data, this could be

done by incorporating the use of XMI instead of XML schema.

• Building a customized semantical analyzer that uses domain knowledge to give a

percentage of strength to the identified objects. And using a threshold to determine

valid ones from invalid ones.

• Using the semantical analyzer in automating redundancy elimination and the

identification of different words sharing a similar meaning.

• Enhancing the relation extractor by enabling it to extract relations without the need

for a customized subset of the English language.

• Enabling the system to use an SQL database repository as well as an XML

repository.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

56

• Building a GUI along with the available command line interface to make the

system more user-friendly.

• Enhancing the capabilities of the natural language extractor by adopting a rule

based language generator that uses a domain based database of language constructs

and usage heuristics.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

57

REFERENCES

(Ambriola and Gervasi, 2000) Ambriola, V. and Gervasi, V., (2000). Environmental

Support for Requirements Writing and Analysis. Thesis, Information Science and

Technology Institute, Pisa, Italy.

(Barnett et al., 1990) Barnett, J., Knight, K., Mani, I. and Rich, E., (1990). Knowledge and

Natural Language Processing, Communications of the ACM, vol. 33, no. 8, pp. 50-71.

(Belford et al., 1976) Belford, P. C., Bond, A. F., Henderson, D. G. and Sellers, L. S.,

(1976). Specifications A Key to Effective Software Development, Proceedings of the 2nd

international conference on Software engineering, International Conference on Software

Engineering, pp. 71-79.

(Bell and Thayer, 1976) Bell, T. E. and Thayer, T. A., (1976). Software Requirements: Are

They Really a Problem?. Proceedings of the 2nd international conference on Software

engineering, International Conference on Software Engineering, pp. 61-68.

(Boehm, 1981) Boehm, B. W., (1981). Software Engineering Economics, Prentice Hall.

(Boggs and Boggs, 1999) Boggs, W. and Boggs, M., (1999). Mastering UML with

Rational Rose, SYBEX Inc.

(Broy, 2006) Broy, M., (2006). Challenges in automotive software engineering.

Proceeding of the 28th international conference on Software engineering, International

Conference on Software Engineering, pp. 33-42.

(Callele and Makaroff, 2006) Callele, D. and Makaroff, D., (2006). Teaching requirements

engineering to an unsuspecting audience, Proceedings of the 37th SIGCSE technical

symposium on Computer science education, Technical Symposium on Computer

Science Education, pp. 433-437.

(Cunningham et al., 2005) Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.,

Ursu, C., Dimitrov, M., Dowman, M., Aswani, N. and Roberts, I., (2005). Developing

Language Processing Components with GATE, University of Sheffield.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

58

(Duffy et al., 1995) Duffy, D., Macnish, C., Mcdermid, J. and Morris, P., (1995). A

Framework for Requirements Analysis Using Automated Reasoning, Proceedings of the

7th International Conference on Advanced Information Systems Engineering, Lecture

Notes In Computer Science, vol. 932, pp. 68-81.

(Han, 2001) Han, J., (2001). TRAM: A Tool for Requirements and Architecture

Management. Proceedings of the 24th Australasian conference on Computer science,

ACM International Conference Proceeding Series, vol. 11, pp. 60-68.

(Hunter et al., 2004) Hunter, D., Watt, A., Rafter, J., Duckett, J., Ayers, D., Chase, N.,

Fawcett, J., Caven, T. and Patterson, B., (2004). Beginning XML, 3
rd

 edition, Wiley

Publishing.

(IEEE, 1998) IEEE. The Institute of Electrical and Electronic Engineers, Inc., (1998).

IEEE Recommended Practice for Software Requirements Specifications, IEEE Std 830.

http://www.laas.fr/~kader/srs.pdf

(Jacobson et al., 1999) Jacobson, I., Booch, G. and Rumbaugh, J., (1999). The Unified

Software Development Process, Addison Wesley.

(Laird, 2001) Laird, C., (2001). XML and UML Combine to Drive Product Development,

http://www-128.ibm.com/developerworks/xml/library/x-xmi.

(Lee, 2003) Lee, B. S., (2003). Automated Conversion from a Requirements Document

to an Executable Formal Specification Using Two-Level Grammar and Contextual

Natural Language Processing, Thesis, University of Alabama, Birmingham.

(Lee and Bryant, 2003) Lee, B. and Bryant, B., (2003). Applying XML Technology for

Implementation of Natural Language Specifications, International Journal of Computer

Systems Science & Engineering, vol. 18, no. 5, pp. 279-300.

(Leffingwell and Widrig, 2003) Leffingwell, D. and Widrig, D., (2003). Managing

Software Requirements: A Use Case Approach, 2
nd

 edition, Addison Wesley.

(Mannion and Keepence, 1995) Mannion M. and Keepence B., (1995). SMART

Requirements, ACM SIGSOFT, Software Engineering Notes vol. 20 no. 2, pp. 42-47.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

59

(Marchal B., 2004) Marchal, B., (2004). Working XML: UML, XMI, and code generation,

http://www-128.ibm.com/developerworks/xml/library/x-wxxm23

(Meta, 2006) Meta Integration Technology, Inc., (2006). Reference Guide,

http://www.metaintegration.net/Products/MIMB

(NASA) NASA Software Assurance Technology Center. NASA Software Documentation

Standard. http://satc.gsfc.nasa.gov/assure/docstd.html.

(Naur and Randell, 1968) Naurm P. and Randellm B., (1968). NATO Science Committee,

Proc. of the NATO Working Conference on Software Engineering. Oct. 1968.

(Perez-Gonzalez and Kalita, 2002) Perez-Gonzalez, H. G. and Kalita, J. K, (2002).

Automatically Generating Object Models from Natural Language Analysis, Companion of

the 17th annual ACM SIGPLAN conference on Object-oriented programming, systems,

languages, and applications, Conference on Object Oriented Programming Systems

Languages and Applications, pp. 86-87.

(Presland and Hennell, 1986) Presland, S. and Hennell, M. A., (1986). Detecting

Functionality in Natural Language Text, Unpublished Tech. Report, Dept. of Statistical

and Computational Mathematics.

(Pressman R., 2005) Pressman, R., (2005). Software Engineering, 6
th

 edition,

McGRAW.HILL

(Rambaugh et al., 1999) Rambaugh, J., Jacobson, I. and Booch, G., (1999). The Unified

Modeling Language Reference Manual, Addison Wesley.

(Saeki et al., 1989) Saeki, M., Horai, H. and Enomoto, H., (1989). Software Development

Process from Natural Language Specification, Proceedings of the 11th international

conference on Software engineering, International Conference on Software

Engineering, pp. 64-73.

(Sommerville, 2004) Sommerville I., (2004). Software Engineering, 7
th

 edition , Addison

Wesley.

 (Standish, 1995) The Standish Group, (1995). Software Chaos,

www.projectsmart.co.uk/docs/chaos_report.pdf

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

60

 (VTC) VTC. Microsoft Visio 2003 Tutorial,

http://www.softwaretrainingtutorials.com/ms-visio-2003.php.

(Wiegers, 2003) Wiegers, K. E., (2003). Software Requirements, 2
nd

 edition, Microsoft

Press.

(Wilson et al., 1997) Wilson, W. M., Rosenberg, L. H. and Hyatt, L. E., Automated

Analysis Requirement Specification, Proceedings of the 19th international conference on

Software engineering, International Conference on Software Engineering, pp. 161-171.

(Zave, 1997) Zave, P., (1997). Classification of research efforts in requirements

engineering, ACM Computing Surveys, vol. 29, no. 4, pp. 315-321.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

61

Appendix A: Bank Requirements Document

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:complexType name="ATM">

 <xs:annotation>

 <xs:documentation>38, 38</xs:documentation>

 </xs:annotation>

 <xs:attribute name="service types">

 <xs:annotation>

 <xs:documentation>41, 41</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="deposit">

 <xs:annotation>

 <xs:documentation>45, 45</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="balance check">

 <xs:annotation>

 <xs:documentation>47, 47</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="ID">

 <xs:annotation>

 <xs:documentation>54, 54</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="PIN">

 <xs:annotation>

 <xs:documentation>56, 56</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="bank">

 <xs:annotation>

 <xs:documentation>58, 58</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="balance">

 <xs:annotation>

 <xs:documentation>60, 60</xs:documentation>

 </xs:annotation>

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

62

 </xs:attribute>

 <xs:attribute name="amount">

 <xs:annotation>

 <xs:documentation>64, 64</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="ID">

 <xs:annotation>

 <xs:documentation>66, 66</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="PIN">

 <xs:annotation>

 <xs:documentation>68, 68</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="balance">

 <xs:annotation>

 <xs:documentation>70, 70</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="sequence">

 <xs:annotation>

 <xs:documentation>74, 74</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="balance">

 <xs:annotation>

 <xs:documentation>96, 96</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="bank">

 <xs:annotation>

 <xs:documentation>98, 98</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="ID">

 <xs:annotation>

 <xs:documentation>100, 100</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="amount">

 <xs:annotation>

 <xs:documentation>104, 104</xs:documentation>

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

63

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="ID">

 <xs:annotation>

 <xs:documentation>106, 106</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="PIN">

 <xs:annotation>

 <xs:documentation>108, 108</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="balance">

 <xs:annotation>

 <xs:documentation>110, 110</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="order">

 <xs:annotation>

 <xs:documentation>114, 114</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="balance">

 <xs:annotation>

 <xs:documentation>118, 118</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="amount">

 <xs:annotation>

 <xs:documentation>120, 120</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="then updates balance">

 <xs:annotation>

 <xs:documentation>122, 118, 118, 122, 118,

118</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="bank">

 <xs:annotation>

 <xs:documentation>124, 124</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="ID">

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

64

 <xs:annotation>

 <xs:documentation>126, 126</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="balance">

 <xs:annotation>

 <xs:documentation>130, 130, 136</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="ID">

 <xs:annotation>

 <xs:documentation>132, 132</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="PIN">

 <xs:annotation>

 <xs:documentation>134, 134</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="balance">

 <xs:annotation>

 <xs:documentation>136, 130, 130, 136, 136, 130, 130,

136</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 </xs:complexType>

 <xs:element name="ATM" type="ATM">

 <xs:annotation>

 <xs:documentation>38, 38</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:complexType name="Balance">

 <xs:annotation>

 <xs:documentation>34, 34</xs:documentation>

 </xs:annotation>

 <xs:attribute name="real number">

 <xs:annotation>

 <xs:documentation>36, 36</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 </xs:complexType>

 <xs:element name="Balance" type="Balance">

 <xs:annotation>

 <xs:documentation>34, 34</xs:documentation>

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

65

 </xs:annotation>

 </xs:element>

 <xs:complexType name="Bank">

 <xs:annotation>

 <xs:documentation>0, 0</xs:documentation>

 </xs:annotation>

 <xs:attribute name="accounts List">

 <xs:annotation>

 <xs:documentation>2, 2</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="ID">

 <xs:annotation>

 <xs:documentation>6, 6, 14</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="PIN">

 <xs:annotation>

 <xs:documentation>8, 8</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="balance">

 <xs:annotation>

 <xs:documentation>10, 10</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="updates balance">

 <xs:annotation>

 <xs:documentation>12, 10, 10, 12, 10,

10</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="ID">

 <xs:annotation>

 <xs:documentation>14, 6, 6, 14, 14, 6, 6,

14</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 </xs:complexType>

 <xs:element name="Bank" type="Bank">

 <xs:annotation>

 <xs:documentation>0, 0</xs:documentation>

 </xs:annotation>

 </xs:element>

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

66

 <xs:complexType name="ID">

 <xs:annotation>

 <xs:documentation>28, 28</xs:documentation>

 </xs:annotation>

 <xs:attribute name="integers">

 <xs:annotation>

 <xs:documentation>32, 32</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 </xs:complexType>

 <xs:element name="ID" type="ID">

 <xs:annotation>

 <xs:documentation>28, 28</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:complexType name="PIN">

 <xs:annotation>

 <xs:documentation>30, 30</xs:documentation>

 </xs:annotation>

 <xs:attribute name="integers">

 <xs:annotation>

 <xs:documentation>32, 32</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 </xs:complexType>

 <xs:element name="PIN" type="PIN">

 <xs:annotation>

 <xs:documentation>30, 30</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:complexType name="account">

 <xs:annotation>

 <xs:documentation>16, 16</xs:documentation>

 </xs:annotation>

 <xs:attribute name="data fields">

 <xs:annotation>

 <xs:documentation>19, 19</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="ID">

 <xs:annotation>

 <xs:documentation>21, 21</xs:documentation>

 </xs:annotation>

 </xs:attribute>

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

67

 <xs:attribute name="PIN">

 <xs:annotation>

 <xs:documentation>23, 23</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="balance">

 <xs:annotation>

 <xs:documentation>26, 26</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 </xs:complexType>

 <xs:element name="account" type="account">

 <xs:annotation>

 <xs:documentation>16, 16</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:complexType name="amount">

 <xs:annotation>

 <xs:documentation>77, 77</xs:documentation>

 </xs:annotation>

 <xs:attribute name="balance">

 <xs:annotation>

 <xs:documentation>84, 84, 88</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="balance">

 <xs:annotation>

 <xs:documentation>88, 84, 84, 88, 88, 84, 84,

88</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="amount">

 <xs:annotation>

 <xs:documentation>90, 90</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 </xs:complexType>

 <xs:element name="amount" type="amount">

 <xs:annotation>

 <xs:documentation>77, 77</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:complexType name="service">

 <xs:annotation>

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

68

 <xs:documentation>50, 50</xs:documentation>

 </xs:annotation>

 <xs:attribute name="ID">

 <xs:annotation>

 <xs:documentation>54, 54</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="PIN">

 <xs:annotation>

 <xs:documentation>56, 56</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="bank">

 <xs:annotation>

 <xs:documentation>58, 58</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="balance">

 <xs:annotation>

 <xs:documentation>60, 60</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 </xs:complexType>

 <xs:element name="service" type="service">

 <xs:annotation>

 <xs:documentation>50, 50</xs:documentation>

 </xs:annotation>

 </xs:element>

</xs:schema>

Figure A1: Bank system XML schema

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

69

ATM

service types : Varchar

deposit : Varchar

balance check : Varchar

ID : Varchar

PIN : Varchar

bank : Varchar

balance : Varchar

amount : Varchar

sequence : Varchar

order : Varchar

then updates balance : Varchar

Bank

accounts List : Varchar

ID : Varchar

PIN : Varchar

balance : Varchar

updates balance : Varchar

PIN

integers : Varchar

Balance

real number : Varchar

account

data fields : Varchar

ID : Varchar

PIN : Varchar

balance : Varchar

amount

balance : Varchar

amount : Varchar

ID

integers : Varchar

service

ID : Varchar

PIN : Varchar

bank : Varchar

balance : Varchar

Figure A2: Bank system UML model

Each ATM has service types,

Each ATM has a deposit,

Each ATM has a balance check,

Each ATM has a ID,

Each ATM has a PIN,

Each ATM has a bank,

Each ATM has a balance,

Each ATM has an amount,

Each ATM has a sequence,

Each ATM has an order,

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

70

Each ATM has a then updates balance.

Each Balance has a real number.

Each Bank has an accounts List,

Each Bank has a ID,

Each Bank has a PIN,

Each Bank has a balance,

Each Bank has an updates balance.

Each ID has integers.

Each PIN has integers.

Each account has data fields,

Each account has a ID,

Each account has a PIN,

Each account has a balance.

Each amount has a balance,

Each amount has an amount.

Each service has a ID,

Each service has a PIN,

Each service has a bank,

Each service has a balance.

Figure A3: Bank system reversed natural language

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

71

Appendix B: Elevator Requirements Document

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:complexType name="lift">

 <xs:annotation>

 <xs:documentation>10, 10</xs:documentation>

 </xs:annotation>

 <xs:attribute name="manufacturer">

 <xs:annotation>

 <xs:documentation>16, 16</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="buttons List">

 <xs:annotation>

 <xs:documentation>39, 39</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="floor">

 <xs:annotation>

 <xs:documentation>43, 43</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="equal priority">

 <xs:annotation>

 <xs:documentation>166, 166</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="emergency button">

 <xs:annotation>

 <xs:documentation>188, 188</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="warning signal">

 <xs:annotation>

 <xs:documentation>194, 194</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="site manager">

 <xs:annotation>

 <xs:documentation>199, 199</xs:documentation>

 </xs:annotation>

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

72

 </xs:attribute>

 <xs:attribute name="mechanism">

 <xs:annotation>

 <xs:documentation>209, 209</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="out-of-service status">

 <xs:annotation>

 <xs:documentation>213, 213</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="requests">

 <xs:annotation>

 <xs:documentation>135, 135</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="final destination">

 <xs:annotation>

 <xs:documentation>144, 144</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 <xs:attribute name="door">

 <xs:annotation>

 <xs:documentation>147, 147</xs:documentation>

 </xs:annotation>

 </xs:attribute>

 </xs:complexType>

 <xs:element name="lift" type="lift">

 <xs:annotation>

 <xs:documentation>10, 10</xs:documentation>

 </xs:annotation>

 </xs:element>

</xs:schema>

Figure B1: Lift system XML schema

A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it

www.manaraa.com

73

lift

manufacturer : Varchar

buttons List : Varchar

floor : Varchar

equal priority : Varchar

emergency button : Varchar

warning signal : Varchar

site manager : Varchar

mechanism : Varchar

out-of-service status : Varchar

requests : Varchar

final destination : Varchar

door : Varchar

Figure B2: Lift system UML model

Each lift has a manufacturer,

Each lift has a buttons List,

Each lift has a floor,

Each lift has an equal priority,

Each lift has an emergency button,

Each lift has a warning signal,

Each lift has a site manager,

Each lift has a mechanism,

Each lift has out of service status,

Each lift has requests,

Each lift has a final destination,

Each lift has a door.

Figure B3: Lift system reversed natural language

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

74

Appendix C: Hotel Reservation Requirements Document

hotel

number of rooms : Varchar
room

number : Varchar

rate types : Varchar

notes : Varchar

status : Varchar

occupancy type : Varchar

TV status : Varchar

phone status : Varchar

balcony status : Varchar

reservation

number : Varchar

arrival date : Varchar

departure date : Varchar

reservation : Varchar

payment method : Varchar

sales tax : Varchar

amount : Varchar
customer

SSN : Varchar

first name : Varchar

last name : Varchar

address : Varchar

home phone number : Varchar

mobile number : Varchar

email : Varchar

number of adults : Varchar

children : Varchar

Figure C1: Hotel reservation system UML model

Each customer has a SSN.

Each customer has a first name.

Each customer has a last name.

Each customer has address.

Each customer has a home phone number.

Each customer has a mobile number.

Each customer has an email.

Each customer has number of adults.

Each customer has a children.

Each hotel has number of rooms.

Each reservation has a number.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

75

Each reservation has an arrival date.

Each reservation has a departure date.

Each reservation has a reservation.

Each reservation has a payment method .

Each reservation has a sales tax.

Each reservation has an amount.

Each room has a number.

Each room has rate types.

Each room has notes.

Each room has status.

Each room has an occupancy type.

Each room has TV status.

Each room has phone status.

Each room has balcony status.

customer is associated with reservation.

customer is associated with hotel.

customer is associated with room.

hotel is associated with room.

hotel is associated with reservation.

hotel is associated with reservation.

hotel is associated with customer.

hotel is associated with reservation.

reservation is associated with customer.

reservation is associated with hotel.

reservation is associated with hotel.

reservation is associated with hotel.

room is associated with hotel.

room is associated with customer.

Figure C2: Hotel reservation system reversed and preprocessed requirements

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

76

room

number : Varchar

rate_types : Varchar

notes : Varchar

status : Varchar

occupancy_type : Varchar

TV_status : Varchar

phone_status : Varchar

balcony_status : Varchar

customer

SSN : Varchar

first__name : Varchar

last__name : Varchar

address : Varchar

home_phone_number : Varchar

mobile__number : Varchar

email : Varchar

number_of_adults : Varchar

children : Varchar

0..10..10..10..1

reservation

number : Varchar

arrival_date : Varchar

departure_date : Varchar

reservation : Varchar

payment_method : Varchar

sales_tax : Varchar

amount : Varchar

0..10..1

0..10..1

hotel

number_of_rooms : Varchar

0..10..1

0..10..1

0..10..1

0..10..1

0..10..10..10..10..10..1

Figure C3: Hotel reservation system UML model after preprocessing

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

77

Appendix D: Therapy Center Requirements Document

Retrieve

patients files

Arrange

patients

therapists

Figure D1: Therapy center UML model

All Patients have a reservation.

All Patients have a file.

Patients is associated with Therapists.

Patients is associated with System.

System is associated with Therapists.

System is associated with Patients.

Therapists is associated with System.

Therapists is associated with Patients.

Figure D2: Therapy center reversed and preprocessed requirements

Patients

reservation : Varchar

file : Varchar

Therapists

0..10..10..10..1

System

0..10..1

0..10..1

0..10..1
0..10..1

Figure D3: Therapy center UML model after preprocessing

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

78

Appendix E: School system Requirements Document

main target

above beneficiaries : Varchar

information : Varchar

control data : Varchar

level of user : Varchar

School

teachers : Varchar

students : Varchar

workers : Varchar

Figure E1: School system UML model

Data is associated with System.

School is associated with Workers.

Students is associated with School.

System is associated with System.

Teachers is associated with School.

Workers is associated with School.

Figure E2: School system reversed and preprocessed requirements

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

79

Data

StudentsWorkers

School

0..10..1

0..10..1

0..10..10..10..1

0..10..1

0..10..1

System 0..10..1

0..10..1

0..10..1

0..10..1

0..10..1

0..10..1

Teachers

0..10..1

0..10..1

0..10..1

0..10..1

Figure E3: School system UML model after preprocessing

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

80

Appendix F: Construction System Requirements Document

User

form : Varchar

input : Varchar

new employees : Varchar

information : Varchar

form/1 : Varchar

input/1 : Varchar

new projects information : Varchar

form/2 : Varchar

input/2 : Varchar

sub-contractor information : Varchar

form/3 : Varchar

input machine information : Varchar

form/4 : Varchar

input payments information : Varchar

form/5 : Varchar

input items : Varchar

store : Varchar

monthly report : Varchar

employee salary : Varchar

daily report : Varchar

machines : Varchar

hours : Varchar

daily report/1 : Varchar

project : Varchar

hours/1 : Varchar

Figure F1: Construction system UML model

Each User has a form.

Each User has a monthly report.

Each User has a daily report.

Each daily report has generalization of machine status.

Each daily report has generalization of project status.

Each form has a generalization of new employee information.

Each form has a generalization of new projects information.

Each form has a generalization of sub-contractor information.

Each monthly report has a generalization of employee salary.

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

81

User is associated with monthly report.

daily report is associated with User.

form is associated with User.

monthly report is associated with monthly report.

Figure F2: Construction system reversed and preprocessed requirements

project status

sub-contractor

inf ormation

new employ ee

inf ormation

new projects

inf ormation

machine status

daily report

inheritance_1

inheritance_1

monthly report

f orm

inheritance_2

inheritance_2

inheritance_2

User

f orm : Varchar

monthly report : Varchar

daily report : Varchar

0..10..1

11
11

0..10..1

110..10..1

employ ee salary

Figure F3: Construction system UML model after preprocessing

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

82

Appendix G: Book Store Requirements Document

employee

availability of book : Varchar

customer : Varchar

account : Varchar

time : Varchar

book : Varchar

customer/1 : Varchar

book/1 : Varchar

customers : Varchar

Figure G1: Book store system UML model

Each book has availability status.

Each employee has a book.

Each employee has a customer.

account is associated with customer.

book is associated with customer.

customer is associated with employee.

employee is associated with book.

Figure G2: Book store system reversed and preprocessed requirements

book

availability_status : Varchar

employee

book : Varchar

customer : Varchar

11 0..10..1

account customer

0..10..1

0..10..10..10..1

Figure G3: Book store system UML model after preprocessing

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

83

Appendix H: Supermarket Requirements Document

client

system : Varchar

user name : Varchar

password : Varchar

registration phase : Varchar

login : Varchar

times : Varchar

system/1 : Varchar

account : Varchar

minutes : Varchar

security purposes : Varchar

password/1 : Varchar

client : Varchar

email : Varchar

registration process : Varchar

password/2 : Varchar

Figure H1: Supermarket system UML model

Each client has an user name.

Each client has a password.

Each client has an account.

Each client has an email.

System is associated with client.

client is associated with System.

Figure H2: Supermarket system reversed and preprocessed requirements

client

user_name : Varchar

password : Varchar

account : Varchar

email : Varchar

System

1111

Figure H3: Supermarket system UML model after preprocessing

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

84

�������� 	
���� ��
�� ������
� 	
������ 	
����� ��� ������

�����

����� ��
�

�����

���� ���� �������

��
��� �����

��� �
�� �������

����

 � ��
��� ����� ����� ���
��� ��
���� ��
�!"�� �
#��� �����$�
�
%�� ��&���
$'!��

 (�� ��&��"��)(Class Diagram *� ������� ��� +���)(Class Diagram�� (�� ! ,$� ��&��"�� �'

�
���� -. /�
�� �0�.

 2�'!�� (�&��� ���34��� -� ������� ��� ��4� -��� ���#��� *� 5�� -�&� ���� 5��4� -��� �'!�� *�

'� ������
� 5��� (�&��� �6� *��� �7!��� .

 �"� � 8���0� �� ������� ��� -. �$'!�
�
$%�� ��&���
�!"���� ���
&� (!� ��
0 ��� �
"� 9�

 :
���� ��;�!��<���=��(XML)
%� .�= *�� ����� ���&� ����0 (!� ���&� �#� �!�� ������
� �

 ��=��(XML) (��)Class Diagram.(

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

www.manaraa.com

85

,�"��� �
#��� *�
��� � ���� *� �
#��� ��
"��
)Class Diagram (�$�=�� (��) XML .(*$��

� *����� ��=�� (�� �#��)XML (�� (!�
�
���� �
#���
%� *;�� -��� �4��"�� 5.

-�
��
� ����?� ��%�
�
���@� ����� *����:

@��B � �$��&�
�!"���� �.��� (!� #.
�� 8��4��� �
#��� *� C��
76����� �
�&��� /�
��

�!"���� ��� 576� 2��� �
#��� ,� �4.����.

��
=B D����� E
�� ��� "� 0��� �=�� C�� 0��� /E
7�.

=�
=B
�!"���� ���6�� F7�
�!"�� +��%� �.��� ��� ��� ���� /����� �.�� ���� .

 �
���� ��� -. 8��4��� ��&�� �
"� ���6� ��4� � B G�$&� �!$67� ��$���� ��
� (�� �.
�<
�

8��4��� ��&�� �
"� ���
���.

 ���� *�
$�� � -�!�
��
���6� �7!��� @
�� *�
%&�� �� �������� ��
�!� &�� -���
�!"

������� ����� �3" *� .
���4&� �
%�'� /��� C�� *� �&�����
�!"���� �!��� �.

 4=����� ��
���� HI
�� ���� *� �
"� 8��4��� ��&�� ���$6�� �
$#��� ��$� �
�&��� ���
��� (��

�!"���� (!� �!6
��� 3��&�!� ����� � 9�
��� ���
%�!� �#.
���� �
�!"���� . �.
�<
�

 (!� ��&�!� �
#��� �
�&��� ���
��� (����)Objects (���)Attributes(���)Class(.

 8��4��� ��&�� �
"� ;�������
��J� ����;�
.
�J� K���
�����
�����
��� �
#� (�� ����"� .

A
ll

R
ig

ht
s

R
es

er
ve

d
-

L
ib

ra
ry

 o
f

U
ni

ve
rs

ity
 o

f
Jo

rd
an

 -
 C

en
te

r
 o

f
T

he
si

s
D

ep
os

it
A

ll
R

ig
ht

s
R

es
er

ve
d

-
L

ib
ra

ry
 o

f
U

ni
ve

rs
ity

 o
f

Jo
rd

an
 -

 C
en

te
r

 o
f

T
he

si
s

D
ep

os
it

